Лечащий Врач #10, 2007

Биоаналоги в лечении анемии при хронической болезни почек: потенциальная польза или неоправданный риск?

Ю. В. Шило

Последствия иммуногенности к биофармацевтическим ЛС

Во многих случаях наличие антител не приводит к каким-либо биологическим или клиническим последствиям. Но и при применении хорошо зарекомендовавших себя инновационных биофармацевтических средств извест­ны случаи биологических и клинических последствий иммуногенности. Наиболее распространен биологический эффект потери эффективности препарата, который описан для ИФНα-2.

Утраченную эффективность можно восстановить, увеличив дозу, что и было сделано в случае лечения фактором VIII больных с гемофилией А. Клинические последствия могут проявляться как общая реакция со стороны иммунной системы — анафилаксия, аллергические реакции или сывороточная болезнь. Раньше такие реакции были достаточно распространены, но со временем стали более редкими по мере появления хорошо очищенных продуктов и внедрения более строгих правил в производстве патентованных биофармацевтических препаратов.

Наиболее серьезные осложнения возникают при нейтрализации природного белка с высокой биологической активностью. Такие последствия были описаны в случае мегакариоцитарного фактора роста (MDGF), когда нейтрализация антителами к биофармацевтическому препарату эндогенного тромбопоэтина вызвала тяжелую форму тромбоцитопении.

Резкое увеличение числа случаев истинной эритроцитарной аплазии (PRCA), вызванной антителами, за пределами США в период с 2000 по 2002 г. указывает на то, что незначительные изменения формы выпуска хорошо зарекомендовавшего себя инновационного препарата, применявшегося в течение многих лет, приводит к значительным клиническим последствиям [5]. Случаи PRCA ассоциировались с нарушением иммунной толерантности к эритропоэтину, что привело к нейтрализации образующимися антителами не только рекомбинантного белка, но и эритропоэтина пациента.

Резкое увеличение заболеваемости наблюдалось в основном при подкожном введении эпоэтина α (торговое название Eprex/Erypo) и совпало с заменой человеческого сывороточного альбумина в качестве стабилизатора на глицин и полисорбат в 1998 г. После отмены его подкожного введения заболеваемость PRCA существенно снизилась.

Для объяснения резкого роста заболеваемости PRCA был предложен ряд механизмов. По-видимому, основную роль в этом сыграла модификация формы препарата. Исследовалось также возможное влияние материала поршня шприца [5], однако полученные результаты оказались противоречивы. Это направление отрабатывалось благодаря наблюдению, что частота случаев заболевания PRCA была ниже среди пациентов, которым ЭПО вводился подкожно из шприцев с порш­нями, имевшими тефлоновое покрытие. Сейчас изучается роль мицелл (полисорбат 80 + ЭПО). Вероятно, усиление иммуногенности данного продукта объясняется условиями его хранения, использования и назначения.

Без сомнения, уменьшение числа случаев PRCA к 2003 г. было связано с несколькими факторами. В ситуации с PRCA важными представляются два аспекта: качество и безопасность биофармацевтических и аналогичных биологических ЛС. Несмотря на то, что инновационный продукт использовался уже в течение многих лет, прошло немало времени, прежде чем удалось установить взаимосвязь между относительно небольшими модификациями его формы выпуска и резким увеличением числа случаев PRCA.

В отношении аналогичных биологических продуктов картина кажется еще более запутанной. Даже в том случае, когда аналогичные биологические ЛС произведены из одного и того же генетического материала, теми же методами, имеют ту же форму и упаковку, что и инновационный продукт, не может быть абсолютной уверенности в том, что они соответствуют референсному продукту. Биологический анализ вариантов ЭPO, произведенных в Индии, странах Азии и Южной Америки, показал их расхождение с исходным препаратом рчЭПО, хотя все производители заявляли о заменяемости и биоэквивалентности препаратов.

Анализ биоаналогов ЛС

Содержание. Разница в молекулярной массе аналогичных молекул может служить указанием на возможное изменение структуры и, соответственно, изменение активности продукта и другие неизвестные последствия. В то время как полученные химическим синтезом сложные вещества (до 1000 Да) могут быть оценены с точностью до 1/100 Да, молекулярная масса биофармацевтических средств (до 145000 Да) вследствие гетерогенности производственного процесса и полученных продуктов может различаться на 1000 Да. Для оценки таких свойств, как количество, молекулярная масса или распределение биологических молекул применяются такие методы анализа, как ELISAs (иммуносорбентный анализ с ферментной меткой) и хроматография. Однако эти виды анализа являются несколько ограниченными: для их проведения требуется достаточное количество (не всегда доступное) референтного материала высокого качества, а сами методы анализа зачастую не могут обеспечить полной характеристики сложных белков. Кроме того, непросто установить клиническую значимость полученных результатов. Следовательно, все выявленные различия следует интерпретировать как потенциальные факторы риска для безопасности лечения.

Биологическая активность. Даже при совпадении массы и плотности молекул аналогичного и референсного БЛС они могут существенно различаться по действию (активности и эффективности). Проверка 12 партий эпоэтина от пяти производителей показала, что их эффективность, по сравнению с указанной на этикетке, составляла от 80 до 125%. Различной эффективностью обладают даже образцы продукта, полученные от одного производителя. Наиболее надежными для сравнения биологической активности продуктов остаются методы in vivo [9].

Физико-химическая целостность. На действенность биопрепарата могут также влиять степень гликозилирования активной субстанции и возможные примеси — скопления молекул и результаты их деградации. Для установления чистоты продукта применяются разнообразные методы, в частности: SDS-PAGE (электрофорез в полиакриламидном геле), RP-HPLC (высокоэффективная жидкостная хроматография с обратной фазой), масс-спектро­скопия или углеводный анализ (применяется для всех гликопротеинов). Ограниченность этих методов объясняется потребностью в достаточно больших количествах образцов, при этом их обработка и подготовка для анализа требует большого труда. Несмотря на указанные ограничивающие факторы, эти методы сыграли свою роль в установлении различий по физико-химической целостности и степени гликозилирования аналогов БЛС.

Все изложенные факты говорят о том, как трудно создать новый «биоаналог» и поддерживать его производство в соответствии с принятыми нормами.

Стабильность продукта, как правило, в первую очередь зависит от условий его хранения, которые должны быть строго определены в зависимости от характеристик продукта. Кроме того, при недостаточном контроле за процессом производства могут различаться скорость и условия распада (деградации) биофармацевтических средств от одного и того же производителя. Стабильность молекулы и ее распад изучают, помещая молекулу в среду с повышенной температурой. Если после электрофореза в геле в нестабильном продукте обнаруживаются не связанные с основной цепочкой полосы, это указывает на высокую вероятность образования соединений. Сниженная, по сравнению с референсным продуктом, стабильность ЛС может объясняться нестабильностью его формы или активной субстанции.